当前位置:首页 > 实用范文

函数的图象【多篇】

时间:2025-03-11 08:53:42
函数的图象【多篇】

导读:函数的图象【多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。

函数的图象 篇一

河南省说课大奖赛教案

高中新教村《数学》第一册(下)

§4.8  正弦函数、余弦函数的图象和性质(一)

正弦函数、余弦函数的图象

单位:河南省济源市第一中学

作者:石    明    秀

时间:2000年9月9日

一、教材分析:

本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。为今后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。

二、学情分析:

在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。

三、教学目标 :

依据教学大纲的要求,制订如下三维教学目标 :

知识目标是:1.理解几何法作图原理(难点);

2.掌握五点法作图(重点);

3.了解三角函数图象的变换作图。

能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、

解决问题的能力;强化学生"数形结合"的数学思想。

发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于

探索、勇于创新的精神,提高综合素质。

四、设计理念:

教无定法,贵在得法。诱思探究学科教学论认为:在教学思想上是启发式,在教学过程 上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣。采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法。体现“教师是主导,学生是主体”的教学原则。使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣。也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

五、教学程序:

本节课的教学过程 设计,主要是从“三性”即“课堂流程的可操作性,知识目标的可接受性,学生主动学习的积极性”考虑的,对整个教学过程 作如下安排:

教学程序图如下:

第一部分:导入  .先复习以前学过的函数图象的作法——描点法,再让学生观察波动图象演示仪,激起学生的兴趣。指出这种形状的曲线就是今天要研究的正、余弦函数的图象。如何作出该曲线呢?

以设问和探索的方式导入  新课,创设情境,激发思维,让学生带着问题,有目的地参与下列教学活动。

第二部分:几何法作图。引导学生在单位圆中作出特殊角的三角函数线,并进行平移,描点作图。先作出 y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,再依据诱导公式一平移图象得出  y=sinx,x∈R的图象。同法得出 y=cosx,x∈R的图象。

第三部分:多媒体展示。教师利用多媒体展示用Flash动画制作的课件,规范作图过程和步骤,统一认识y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,在此提醒学生在直角坐标系中,横、纵坐标轴的长度单位必须一致。否则画出的图象不是正弦函数的真实面貌。

第四部分:“五点法”作图。曲线形成后,让学生观察图象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作图步骤。

第五部分:总结。让学生自己总结本节课的重点、难点和学习目标,教师再补充。这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用。

如此设计,联系了新旧知识,体现了从特殊到一般,再由一般到特殊的认知规律。在这种螺旋式上升的过程中,学生将通过自己的亲自动手实践,不仅学到本节课的知识,而且还将提高思维水平和认知能力。同时也体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想。同时在教学过程 中配以多媒体课件的展示,图文并茂,简洁明快,充分调动学生的各个感官,使学生学的生动,学的有趣,增大课堂容量,提高课堂效率。

为了突破几何法作图这个难点,制作了多媒体课件,将 y=sinx,x∈R

和  y=cos x,x∈R图象的作法分解为三个问题来解决,降低了难度。通过展示课件,生动形象地再现三角函数线的平移和曲线形成过程。使原本枯燥地知识变得生动有趣,激发学生的兴趣,调动学生的积极性(通过教学也的确是这样的).及时让学生跟着演示作图,提高学生的动手能力、模仿能力、创造能力。直观的动画,不仅使学生愉快地接受新知识,而且将激发学生的创造性思维和想象力,使学生充分发挥其思维潜能,拓展思维空间。

用“三步曲”来突出“五点法”作图这个重点。第一步设疑:“几何法作图。由于取点个越多,画出的图象也就比较精确,但也较为麻烦。在精确度要求不高的前提下,能否少定一些点,作出其简图呢?”问题的提出可以立刻抓住学生的好奇心,激起学生强烈的求知欲。第二步引导:让学生观察正弦函数 y=sinx,x∈[0,2π]和余弦函数y= cosx,x∈[0,2π]的图象,启发哪些点对决定图象的形状起着关键的作用呢?引导学生寻找出五个关键点。体现教师的主导作用;第三步小结:让学生分组讨论,互相补充,归纳出五点法作图步骤。教师对学生讨论的情况作出评价并指出作图应注意的问题,然后小结:“五点法”可以比较简捷地作出正弦、余弦函数的草图,对于以后研究正弦、余弦函数的性质将起到重要的作用。这样设计体现了“多动手、勤动脑、敢猜想、善发现”的学习方法,使学生真正成为教学的主体。

应用:画出下列函数的简图:

(1)y=1+sinx    x∈[0,2π];

(2)y=-cosx    x∈[0,2π].

解:(1)按五个关键点列表:

利用正弦函数的性质描点画图(如下图).

(2)按五个关键点列表:利用余弦函数的性质描点作图(如下图).

反馈练习:

< ……此处隐藏14226个字……必要不充分条件

C.充要条件 D.既不充分也不必要条件

(3)根据三角函数的图像写出下列不等式成立的角 集合

① ②

参考答案:

(1)C.注: 与 相邻两点之间距离即为周期长

(2)D.注:由 ,但 ,反之 ,但

(3)①

4.总结提炼

(1) 的作图是利用平移正切线得到的,当我们获得 上图像后,再利用周期性把该段图像向左右延伸、平移。

(2) 性质。

定义域

值域

周期

奇偶性

单调增区间

对称中心

渐近线方程

奇函数

(四)板书设计 

课题……

1.用正切线作正切函数图像

2.正切函数的性质

例1

例2

演练反馈

总结提炼

函数的图象 篇九

一、目的要求

1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析

1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程

复习提问:

1.什么是一次函数?什么是正比例函数?

2.在同一直角坐标系中描点画出以下三个函数的图象:

y=2x   y=2x-1   y=2x+1

新课讲解:

1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

-§www. 再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法。现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数,

y=0.5x

与 y=-0.5x

由这两个正比例函数的解析式不难看出,当x=0时,

y=0

即函数图象经过原点。(让学生想一想,为什么?)

除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

(1)先选取两点,通常选点(0,0)与点(1,k);

(2)在坐标平面内描出点(0, o)与点(1,k);

(3)过点(0,0)与点(1,k)做一条直线。

这条直线就是正比例函数y=kx(k≠0)的图象。

观察正比例函数  y=0.5x 的图象。

这里,k=0.5>0.

从图象上看, y随x的增大而增大。

再观察正比例函数 y=-0.5x  的图象。

这里,k=一0.5<0

从图象上看, y随x的增大而减小

实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质。

先看

y=0.5x

任取两对对应值。 (x1,y1)与(x2,y2),

如果x1>x2,由k=0.5>0,得

0.5x1>0.5x2

即   yl>y2

这就是说,当x增大时,y也增大。

类似地,可以说明的y=-0.5x  性质。

从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有下列性质:

(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

y=kx+b(k,b是常数,k≠0)

通常选取

(o,b)与(-

两点,

对于例 l中的一次函效

y=2x+1与y=-2x+1

就分别选取

(o,1)与(一0.5,2),

还有

(0,1)—与(0.5.0).

在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

课堂练习:

教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

课堂小结:

1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象。

2. 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象。

3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

四、课外作业

1.教科书习题13.5a组第l一3题。

2.选作教科书习题13.5b组第1题。

你也可以在搜索更多本站小编为你整理的其他函数的图象【多篇】范文。

《函数的图象【多篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式