【寄语】数学圆柱的体积教案新版多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。
小学六年级数学教案《圆柱的体积》 篇一教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点和难点
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学过程设计
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(一)复习准备
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。
(二)学习新课
1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
2.看书自学。
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体与圆柱体有什么关系?
(3)怎样计算切拼成的长方体体积?
3.推导圆柱体积公式。
(1)讨论自学题(1)。圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗?
把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)动手操作切拼,将圆柱体转化成长方体。
出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。
请两名同学按照你们的叙述,把圆柱体切拼成长方体。(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。)
现在讨论自学题(2)。
师:这个长方体与圆柱体比较一下,什么变了?什么没变?
生:形状变了,体积大小没变。
(3)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(引导学生有顺序的进行叙述,分小组讨论,让学生充分发言。)
小结:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
(4)利用公式进行计算。
例1一根圆柱形钢材,底面积是50平方厘米,高2。1米,它的体积是多少?
引导学生审题,说出题目中的已知条件和问题。做这道题还要注意什么?
生:已知圆柱体底面积和高,求圆柱的体积,注意统一单位名称。
2。1米=210厘米(①用字母表示已知条件)
S=50h=210(②写出字母公式)
V=Sh(③列式计算)
=50×210(④写出答题)
=10500
答:它的体积是10500立方厘米。
引导学生总结出做题步骤。
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,会求出底面积)和高。注意统一单位名称。
(三)巩固反馈
1.圆柱体的底面积3。14平方分米,高40厘米。它的体积是多少?
2.求下面圆柱体的体积。(单位:厘米)
3.填表:
4.一个圆柱形容器,底面半径是25厘米,高8分米。它的容积是多少立方分米?
5.一个圆柱形粮囤,从里面量,底面周长是6。28米,高20分米。它的容积是多少立方米?
(四)课堂总结
这节课,你学会了什么?还有什么问题?
生:学会了圆柱体的体积计算公式,并会用公式解答实际问题。
思考题:
一张长方形的纸长6。28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
课堂教学设计说明
本节教案分三个层次。
第一层次是复习。
第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。
第二层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
本节教案特点:充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于玩中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。
小学数学圆柱体积教案 篇二教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
圆柱体积计算公式的推导过程
设计理念:
圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:
1、合作探究学习为主要的学习方式。< ……此处隐藏2710个字……p>⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
2、实验操作
(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。(等于底面积乘高)。
大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。那用什么办法验证呢?请独立思考。
(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?
(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?
(3)指名两位同学上台操作教具,让学生观察。
师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。
(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。)
演示一组动画(将圆柱底面等分成32份、64等份……)课件演示。问:和你的想象一样吗?使学生清楚地认识到:拼成的立体图形会越来越接近长方体。
3、观察比较,推导公式
(1)提问:拼成的长方体与原来的圆柱有什么关系?出示讨论题。
a、拼成的长方体的底面积与原来圆柱的底面积有什么关系?
b、拼成的长方体的高与原来圆柱的高有什么关系?
c、拼成的长方体的体积与原来圆柱的体积有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
(2)想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
(3)如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么,圆柱的体积计算公式你能写出来吗?试试看。
指名同学到黑板板书:v=sh
我们发现圆柱拼成长方体后体积,底面积,高没有变,那什么变了呢?
指名回答。(形状变了;表面积变大)
4、回顾反思
回顾圆柱体积公式的探索过程,你有什么体会?
三、练习运用、迁移创新
1、做练习三第1题。
让学生口头列式并完成填表。问:要求体积必须知道底面积和高吗?
2、教学“试一试”。
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
3、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
4、做“练一练”第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生先根据底面周长求出底面积。
5、做练习三第2题。
学生读题后,提问:计算电饭煲的容积,为什么要从里面量尺寸?
6、拓展题
把一个高是20厘米的圆柱切拼成一个近似的长方体,表面积比原来增加了200平方厘米,圆柱的体积是多少立方厘米?
四、课堂小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
小学六年级数学教案《圆柱的体积》 篇五教学目标:
1、知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2、方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3、情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、.探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份?),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的()体。这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。因为长方体的体积等于(),所以,圆柱体的体积等于()用字母表示()。
(2)、底面积是10平方米,高是2米,体积是()。
(3)、底面半径是2分米,高是5分米,体积是()。
2、讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积
V=兀r2×h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积
V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积
V=兀(C÷兀÷2)×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
板书设计:
圆柱的体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
你也可以在搜索更多本站小编为你整理的其他数学圆柱的体积教案新版多篇范文。
文档为doc格式